

Welcome to DeepFinder’s documentation!

Contents:

	Introduction
	Context

	What DeepFinder is

	Guide
	Annotation

	Target generation

	Training

	Segmentation

	Clustering

	Tutorial
	SHREC’19 dataset

	Chlamydomonas dataset

	Command line tools
	Set up

	Annotation

	Target generation

	Training

	Segmentation

	Clustering

	API
	DeepFinder

	Utilities

Indices and tables

	Index

	Module Index

	Search Page

Introduction

DeepFinder is an original deep learning approach to localize macromolecules in cryo electron tomography images.
The method is based on image segmentation using a 3D convolutional neural network.

Context

This method has been developed in the frame of Emmanuel Moebel’s PhD thesis at Inria Rennes, under Charles Kervrann’s
supervision (team Serpico).

If you are curious, you can access his PhD manuscript here [https://hal.inria.fr/tel-02153877] , entitled
“New strategies for the identification and enumeration of macromolecules in 3D images of cryo electron tomography”.

What DeepFinder is

DeepFinder is a python3 package that allows analysing 3D images with a deep learning method. It possesses a graphical
user interface to allow non-computer scientists to work with this tool. It is based on the Keras package.

Guide

DeepFinder consists of 5 steps (blue boxes below), which constitute a workflow that allows to locate macromolecular
complexes in crowded cells, when executed in depicted order. Each step can be executed either using a script (see examples/)
or using the graphical user interface (see pyqt/). These steps may be used in other workflows, e.g. if the user
needs only the segmentation step.

[image: _images/deepfinder_workflow.png]

DeepFinder workflow

Vocabulary:

	Object list: contains information on annotated or found macromolecular complexes

	Label map: segmentation map, i.e. a 3D array of integers {0,…,Nclasses}, where ‘0’ is reserved for the background class.

	Target: a label map used for training

Note

DeepFinder can read and write tomograms in mrc, map and h5 formats.

Annotation

DeepFinder provides a GUI for annotating your tomograms. The goal is to constitute an object list per tomogram.
The term ‘object’ corresponds here to a macromolecular complex.

The object list

An object list contains following information:

	Class label

	Coordinates (x,y,z)

	Orientation (phi,psi,theta): needed for generating shape targets

	Tomogram index: needed for training

	Cluster size: obtained after clustering step

A list contains at least class label and coordinates of each object. Other information (e.g. orientation etc) is included
depending on considered operation (e.g. shape target generation).

Note

An object list can be saved in xlsx or in xml format. This allows you to edit your object lists in Excel or in a text editor (for ex. for merging object lists).

Note

The API provides several functions for editing object lists in your scripts. You can for ex. scale coordinates, extract all objects from a specific class etc. See API section for more information.

Display window

This window allows to explore a tomogram with ortho-slices (i.e. 2D slices in each dimension). By clicking on the slices,
you can scan through the volume in x, y and z directions. Furthermore, you can adjust the contrast interactively and
denoise the slices to improve visibility. Denoising is performed by averaging neighboring slices, the number of neighbors
being configurable by the user.

Also, a label map (i.e. segmentation map) can be superimposed on the tomogram slices and its opacity can be adapted.

Annotation GUI

[image: _images/gui_annotation.png]

Annotation GUI

The annotation graphical interface is constituted of a display window and an annotation window, and allows you to
interactively annotate your tomograms. First, select desired class. Then browse your tomogram to find instances of
desired macromolecule species, and double-clic on their position. You will see a dot appearing on the tomogram slices
and a row appear in the object table, confirming that the position has been saved. Repeat the process until all visible
macromolecules have been annotated. To finish, save your object list. In the same way, annotate as many tomograms as you
can, then proceed to the next step.

Note

As annotation is a time-consuming task, you can save the current state and resume the task where you left it by
saving the object list.

Target generation

This step converts an object list (i.e. position-wise annotations) into a label map (i.e. voxel-wise annotation).
We propose two strategies to do so: spheres and shapes.

[image: _images/gui_target_generation.png]

Target generation GUI

	Object list path: path to the object list obtained from the annotation procedure.

	Initialize target: allow you to initialize the target with an array already containing annotated structures like membranes.

	Target size (in voxels): if you don’t use the target initialization option, you need to specify the size of your target volume, which should be the same size as the tomogram it describes.

	Target path: where the target volume should be saved.

Sphere targets

Here, targets are generated by placing a sphere at positions contained in the object list. You can specify a different
radius per class. This radius should correspond to the size of the object. This technique is quick to execute in comparison
to ‘shapes’ and yields decent results.

	Radius list (in voxels): sphere radius per class. The list order should correspond to the class label as follows: 1st line -> radius of class 1 ; 2nd line -> radius of class 2 …

Shape targets

This strategy is more precise but needs more time and external tools to execute. Instead of using spheres, more precise
masks (corresponding to macromolecule shapes) are placed at specified positions. However, to obtain these masks and also
the orientation of each object, a sub-tomogram averaging procedure is needed (as available in PyTOM or Scipion).
So using this strategy involves more efforts and time, but yields better results, especially for small objects.

	Shape mask paths: list of mask paths (1 mask per class). The masks are 3D arrays which contain the shape of macromolecules (‘1’ for ‘is object’ and ‘0’ for ‘is not object’). The path order should correspond to the class label as follows: 1st line -> path to mask of class 1 ; 2nd line -> path to mask of class 2 …

Warning

When the ‘shapes’ strategy is selected, the object list needs to contain the orientation (i.e. Euler angles) of each object.

Training

Note

If you are a beginner in deep learning, and would like to gain a general understanding, you can read Section 3 “An introduction to deep learning” of E. Moebel’s (author of DeepFinder) PhD thesis [https://hal.inria.fr/tel-02153877] .

Before running the training procedure, it is good practice to define a validation set, which is a subset of your training set.
Then, this validation set will not be used for training, but for computing metrics to evaluate training performance.
This is helpful for checking for overfitting.
Intuitively, overfitting happens when instead of learning discriminating features of objects,
the network learns them by heart. Consequently, like a bad student, the network is unable to generalize its knowledge to
new data and produces a classification of poor quality.
You can detect overfitting by comparing training loss and validation loss curves (or accuracy curves). If they have similar values, then training is efficient.
If they diverge, then there is overfitting.

You can define which of your annotated objects you want to use for training and for validation by storing them in separate
object lists (see image below). Ideally, the validation objects should originate from a different tomogram than the
training objects. If this is not possible, try to choose validation objects that are not too close to training
objects. The minimum size of validation set should be at least few dozen objects per class, ideally a few hundreds.

[image: _images/gui_train.png]

Training GUI

DeepFinder expects the dataset folder to be organized as follows:

folder
|-train
| |-tomo1.mrc
| |-tomo1_target.mrc
| |-tomo1_objl.xml
| |- ...
|-valid
| |-tomo8.mrc
| |-tomo8_target.mrc
| |-tomo8_objl.xml

	Dataset path: give here the path to your dataset folder

	Initialize weights: if left empty, the model will be trained from scratch (random initizalisation). Else, you can use this field to resume a previous training session, by indicating the path to the weights obtained from a previous training. Or, if you want to do fine-tuning, you can load weights of a pre-trained DeepFinder model.

	Output path: where network weights and training metrics will be saved.

Training parameters:

	Number of classes (background class included)

	Patch size (in voxels): must be a multiple of 4, due to the network architecture.

	Batch size: number of patches used to compute average loss.

	Number of epochs: at the end of each epoch, evaluation on validation set is performed (usefull to check if network overfits).

	Steps per epoch: number of batches trained on per epoch. In the end, the total number of training iterations is [number of epochs]x[steps per epoch].

	Steps per validation: number of batches used for validation.

	Direct read: if checked, only the current batch is loaded into memory, instead of the whole dataset. Usefull when running out of memory. Transmission speed between dataset storage and GPU should be high enough.

	Bootstrap: if checked, applies re-sampling to batch generation, so that each class has an equal chance to be sampled. Usefull when in presence of unbalanced classes. Can remain checked.

	Random shift (in voxels): applied to positions in object list when sampling patches. Enhances network robustness. Make sure that objects are still contained in patches after the shift is applied.

[image: _images/sampling_rnd_shift.png]

Patch sampling and random shift

Once you filled out all required fields, hit the ‘Launch’ button. A second window will appear, displaying training metrics in real time,
allowing you to monitor the progress of the procedure. Metrics per class are computed for the validation set (F1-score, precision, recall).
It is common to obtain per-class score values around 0.6, which for our datasets was enough for satisfying localization.
Indeed, even if macromolecules are segmented only partially, it is enough to find them in the Clustering step.

Note

If your machine runs out of memory, you can reduce patch size and batch size values.

Note

Every 10 epochs, the network weights are saved at the output path. If your training procedure is interrupted for any reason,
this allows you to resume the training at last saved network state, instead of starting over from scratch.

Segmentation

Now that your network is trained, it is time to apply it to segment new tomograms. As a tomogram is too large to be
processed in one take, the procedure splits the volume in smaller overlapping 3D patches. You can adapt the patch size
to the available memory on your machine.

[image: _images/gui_segment.png]

Segmentation GUI

	Tomogram path

	Net weights path: path to the .h5 file containing the network weights obtained by the training procedure.

	Number of classes (background class included)

	Patch size (in voxels): must be a multiple of 4, due to the network architecture.

	Label map path: where the segmented tomogram should be saved.

	Bin label map: when checked, also saves a sub-sampled version of the label map. Smaller label maps reduces computing time of clustering step.

Once the segmentation is achieved, a display window appears, allowing you to check the consistency of the result.

Clustering

This procedure analyzes the segmented tomogram (i.e. label map), identifies individual macromolecules and outputs
their coordinates, stored as an object list. This analysis is achieved with the mean-shift clustering algorithm.

[image: _images/gui_cluster.png]

Clustering GUI

	Label map path: path to input label map.

	Cluster radius (in voxels): parameter for clustering algorithm. Corresponds to average object radius.

	Object list path: where the output object list should be saved.

Tutorial

This part describes how to reproduce the segmentations obtained in our paper [https://www.biorxiv.org/content/10.1101/2020.04.15.042747v1], using pre-trained weights.
First, please follow installation instructions [https://gitlab.inria.fr/serpico/deep-finder] .

Next, launch the segmentation GUI by typing following command into the terminal: /path/to/deep-finder/bin/segment

[image: _images/gui_segment.png]

Segmentation GUI

In the segmentation window (left), please fill out requested fields as follows:

SHREC’19 dataset

	Tomogram path: /path/to/deep-finder/examples/analyze/in/tomo9.mrc

	Net weights path: /path/to/deep-finder/examples/analyze/in/net_weights_FINAL.h5

	Number of classes: 13

Chlamydomonas dataset

Download the example tomogram here [https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-3967].

	Tomogram path: /path/to/download/emd_3967.map

	Net weights path: /path/to/deep-finder/examples/training/out/net_weights_chlamydomonas.h5

	Number of classes: 4

After setting the patch size and your output path, click on button Launch. Progress about computation should be
printed in the box below the button. Once computation is finished, the display window should pop up, showing the
obtained segmentation, super-imposed with the tomogram, allowing you to inspect the result. For more details about
segmentation and display windows, please see our Guide.

Command line tools

This page gives instructions on how to launch DeepFinder steps from the terminal.

Set up

First, add DeepFinder to your path with following command: export PATH="/path/to/deep-finder/bin:$PATH"

You can add this command to your ~/.bash_profile

Note

Running these commands without any argument will launch the graphical user interface.

Annotation

Usage:

annotate -t /path/to/tomogram.mrc
 -o /path/to/output/object_list.xml

Target generation

For generate_target and train, it is not possible to pass all necessary parameters as terminal arguments. Therefore, they have to be passed as an xml file.

Usage:

generate_target -p /path/to/parameters.xml

Parameter file:

<paramsGenerateTarget>
 <path_objl path="/path/to/objl.xml"/>
 <path_initial_vol path=""/>
 <tomo_size>
 <X size="400"/>
 <Y size="400"/>
 <Z size="200"/>
 </tomo_size>
 <strategy strategy="spheres"/>
 <radius_list>
 <class1 radius="1"/>
 <class2 radius="2"/>
 <class3 radius="3"/>
 </radius_list>
 <path_mask_list>
 <class1 path=""/>
 </path_mask_list>
 <path_target path="/path/to/target.mrc"/>
</paramsGenerateTarget>

Note

You can find classes with methods for automatically reading and writing these parameter files in utils/params.py

Training

Usage:

train -p /path/to/parameters.xml

Parameter file:

<paramsTrain>
 <path_out path="./"/>
 <path_tomo>
 <tomo0 path="/path/to/tomo0.mrc"/>
 <tomo1 path="/path/to/tomo1.mrc"/>
 <tomo2 path="/path/to/tomo2.mrc"/>
 </path_tomo>
 <path_target>
 <target0 path="/path/to/target0.mrc"/>
 <target1 path="/path/to/target1.mrc"/>
 <target2 path="/path/to/target2.mrc"/>
 </path_target>
 <path_objl_train path="/path/to/objl_train.xml"/>
 <path_objl_valid path="/path/to/objl_valid.xml"/>
 <number_of_classes n="3"/>
 <patch_size n="48"/>
 <batch_size n="20"/>
 <number_of_epochs n="100"/>
 <steps_per_epoch n="100"/>
 <steps_per_validation n="10"/>
 <flag_direct_read flag="False"/>
 <flag_bootstrap flag="True"/>
 <random_shift shift="13"/>
</paramsTrain>

Segmentation

Usage:

segment -t /path/tomogram.mrc
 -w /path/net_weights.h5
 -c NCLASS
 -p PSIZE
 -o /path/output/segmentation.mrc

With NCLASS and PSIZE integer values. See Guide for parameter description.

Clustering

Usage:

cluster -l /path/to/segmentation.mrc
 -r clusterRadius
 -o /path/to/output/object_list.xml

API

DeepFinder

Each step of the DeepFinder workflow is coded as a class. The parameters of each method are stored as class attributes
and are given default values in the constructor. These parameters can easily be given custom values as follows:

from deepfinder.training import Train
trainer = Train(Ncl=5, dim_in=56) # initialize training task, where default batch_size=25
trainer.batch_size = 16 # customize batch_size value

Each class has a main method called ‘launch’ to execute the procedure. These classes all inherit from a mother class
‘DeepFinder’ that possesses features useful for communicating with the GUI.

Training

	
class deepfinder.training.TargetBuilder

	
	
generate_with_shapes(objl, target_array, ref_list)

	Generates segmentation targets from object list. Here macromolecules are annotated with their shape.

	Parameters

	
	objl (list of dictionaries) – Needs to contain [phi,psi,the] Euler angles for orienting the shapes.

	target_array (3D numpy array) – array that initializes the training target. Allows to pass an array already containing annotated structures like membranes.
index order of array should be [z,y,x]

	ref_list (list of 3D numpy arrays) – These reference arrays are expected to be cubic and to contain the shape of macromolecules (‘1’ for ‘is object’ and ‘0’ for ‘is not object’)
The references order in list should correspond to the class label.
For ex: 1st element of list -> reference of class 1; 2nd element of list -> reference of class 2 etc.

	Returns

	Target array, where ‘0’ for background class, {‘1’,’2’,…} for object classes.

	Return type

	3D numpy array

	
generate_with_spheres(objl, target_array, radius_list)

	Generates segmentation targets from object list. Here macromolecules are annotated with spheres.
This method does not require knowledge of the macromolecule shape nor Euler angles in the objl.
On the other hand, it can be that a network trained with ‘sphere targets’ is less accurate than with ‘shape targets’.

	Parameters

	
	objl (list of dictionaries) –

	target_array (3D numpy array) – array that initializes the training target. Allows to pass an array already containing annotated structures like membranes.
index order of array should be [z,y,x]

	radius_list (list of int) – contains sphere radii per class (in voxels).
The radii order in list should correspond to the class label.
For ex: 1st element of list -> sphere radius for class 1, 2nd element of list -> sphere radius for class 2 etc.

	Returns

	Target array, where ‘0’ for background class, {‘1’,’2’,…} for object classes.

	Return type

	3D numpy array

	
class deepfinder.training.Train(Ncl, dim_in)

	
	
launch(path_data, path_target, objlist_train, objlist_valid)

	This function launches the training procedure. For each epoch, an image is plotted, displaying the progression
with different metrics: loss, accuracy, f1-score, recall, precision. Every 10 epochs, the current network weights
are saved.

	Parameters

	
	path_data (list of string) – contains paths to data files (i.e. tomograms)

	path_target (list of string) – contains paths to target files (i.e. annotated volumes)

	objlist_train (list of dictionaries) – contains information about annotated objects (e.g. class, position)
In particular, the tomo_idx should correspond to the index of ‘path_data’ and ‘path_target’.
See utils/objl.py for more info about object lists.
During training, these coordinates are used for guiding the patch sampling procedure.

	objlist_valid (list of dictionaries) – same as ‘objlist_train’, but objects contained in this list are not
used for training, but for validation. It allows to monitor the training and check for over/under-fitting.
Ideally, the validation objects should originate from different tomograms than training objects.

Note

	The function saves following files at regular intervals:
	net_weights_epoch*.h5: contains current network weights

net_train_history.h5: contains arrays with all metrics per training iteration

net_train_history_plot.png: plotted metric curves

Inference

	
class deepfinder.inference.Segment(Ncl, path_weights, patch_size=192)

	
	
launch(dataArray)

	This function enables to segment a tomogram. As tomograms are too large to be processed in one take, the
tomogram is decomposed in smaller overlapping 3D patches.

	Parameters

	
	dataArray (3D numpy array) – the volume to be segmented

	weights_path (str) – path to the .h5 file containing the network weights obtained by the training procedure

	Returns

	contains predicted score maps. Array with index order [class,z,y,x]

	Return type

	numpy array

	
class deepfinder.inference.Cluster(clustRadius)

	
	
launch(labelmap)

	This function analyzes the segmented tomograms (i.e. labelmap), identifies individual macromolecules and outputs
their coordinates. This is achieved with a clustering algorithm (meanshift).

	Parameters

	
	labelmap (3D numpy array) – segmented tomogram

	clustRadius (int) – parameter for clustering algorithm. Corresponds to average object radius (in voxels)

	Returns

	the object list with coordinates and class labels of identified macromolecules

	Return type

	list of dict

Utilities

Common utils

	
deepfinder.utils.common.bin_array(array)

	Subsamples a 3D array by a factor 2. Subsampling is performed by averaging voxel values in 2x2x2 tiles.

	Parameters

	array (numpy array) –

	Returns

	binned array

	Return type

	numpy array

	
deepfinder.utils.common.plot_volume_orthoslices(vol, filename)

	Writes an image file containing ortho-slices of the input volume. Generates same visualization as matlab function
‘tom_volxyz’ from TOM toolbox.
If volume type is int8, the function assumes that the volume is a labelmap, and hence plots in color scale.
Else, it assumes that the volume is tomographic data, and plots in gray scale.

	Parameters

	
	vol (3D numpy array) –

	filename (str) – ‘/path/to/file.png’

	
deepfinder.utils.common.read_array(filename, dset_name='dataset')

	Reads arrays. Handles .h5 and .mrc files, according to what extension the file has.

	Parameters

	
	filename (str) – ‘/path/to/file.ext’ with ‘.ext’ either ‘.h5’ or ‘.mrc’

	dset_name (str, optional) – h5 dataset name. Not necessary to specify when reading .mrc

	Returns

	numpy array

	
deepfinder.utils.common.write_array(array, filename, dset_name='dataset')

	Writes array. Can write .h5 and .mrc files, according to the extension specified in filename.

	Parameters

	
	array (numpy array) –

	filename (str) – ‘/path/to/file.ext’ with ‘.ext’ either ‘.h5’ or ‘.mrc’

	dset_name (str, optional) – h5 dataset name. Not necessary to specify when reading .mrc

Object list utils

	
deepfinder.utils.objl.above_thr(objlIN, thr)

	
	Parameters

	
	objl (list of dict) –

	thr (float) – threshold

	Returns

	contains only objects with cluster size >= thr

	Return type

	list of dict

	
deepfinder.utils.objl.disp(objlIN)

	Prints objl in terminal

	
deepfinder.utils.objl.get_class(objlIN, label)

	Get all objects of specified class.

	Parameters

	
	objl (list of dict) –

	label (int) –

	Returns

	contains only objects from class ‘label’

	Return type

	list of dict

	
deepfinder.utils.objl.get_labels(objlIN)

	Returns a list with different (unique) labels contained in input objl

	
deepfinder.utils.objl.get_obj(objl, obj_id)

	Get objects with specified object ID.

	Parameters

	
	objl (list of dict) – input object list

	obj_id (list of int) – object ID of wanted object(s)

	Returns

	contains object(s) with obj ID ‘obj_id’

	Return type

	list of dict

	
deepfinder.utils.objl.get_tomo(objlIN, tomo_idx)

	Get all objects originating from tomo ‘tomo_idx’.

	Parameters

	
	objlIN (list of dict) – contains objects from various tomograms

	tomo_idx (int) – tomogram index

	Returns

	contains objects from tomogram ‘tomo_idx’

	Return type

	list of dict

	
deepfinder.utils.objl.read(filename)

	Reads object list. Handles .xml and .xlsx files, according to what extension the file has.

	Parameters

	filename (str) – ‘/path/to/file.ext’ with ‘.ext’ either ‘.xml’ or ‘.xlsx’

	Returns

	list of dict

	
deepfinder.utils.objl.remove_class(objl, label_list)

	Removes all objects from specified classes.

	Parameters

	
	objl (list of dict) – input object list

	label_list (list of int) – label of objects to remove

	Returns

	same as input object list but with objects from classes ‘label_list’ removed

	Return type

	list of dict

	
deepfinder.utils.objl.remove_obj(objl, obj_id)

	Removes objects by object ID.

	Parameters

	
	objl (list of dict) – input object list

	obj_id (list of int) – object ID of wanted object(s)

	Returns

	same as input object list but with object(s) ‘obj_id’ removed

	Return type

	list of dict

	
deepfinder.utils.objl.scale_coord(objlIN, scale)

	Scales coordinates by specified factor. Useful when using binned (sub-sampled) volumes, where coordinates need to be
multiplied or divided by 2.

	Parameters

	
	objlIN (list of dict) –

	scale (float, int or tuple) – if float or int, same scale is applied to all dim

	Returns

	object list with scaled coordinates

	Return type

	list of dict

	
deepfinder.utils.objl.write(objl, filename)

	Writes object list. Can write .xml and .xlsx files, according to the extension specified in filename.

	Parameters

	
	objl (list of dict) –

	filename (str) – ‘/path/to/file.ext’ with ‘.ext’ either ‘.xml’ or ‘.xlsx’

Scoremap utils

	
deepfinder.utils.smap.bin(scoremaps)

	Subsamples the scoremaps by a factor 2. Subsampling is performed by averaging voxel values in 2x2x2 tiles.

	Parameters

	scoremaps (4D numpy array) – array with index order [class,z,y,x]

	Returns

	4D numpy array

	
deepfinder.utils.smap.read_h5(filename)

	Reads scormaps stored in .h5 file.

	Parameters

	filename (str) – path to file
This .h5 file has one dataset per class (dataset ‘/class*’ contains scoremap of class *)

	Returns

	scoremaps array with index order [class,z,y,x]

	Return type

	4D numpy array

	
deepfinder.utils.smap.to_labelmap(scoremaps)

	Converts scoremaps into a labelmap.

	Parameters

	scoremaps (4D numpy array) – array with index order [class,z,y,x]

	Returns

	array with index order [z,y,x]

	Return type

	3D numpy array

	
deepfinder.utils.smap.write_h5(scoremaps, filename)

	Writes scoremaps in .h5 file

	Parameters

	
	scoremaps (4D numpy array) – array with index order [class,z,y,x]

	filename (str) – path to file
This .h5 file has one dataset per class (dataset ‘/class*’ contains scoremap of class *)

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 deepfinder	

 	
 	
 deepfinder.utils.common	

 	
 	
 deepfinder.utils.objl	

 	
 	
 deepfinder.utils.smap	

Index

 A
 | B
 | C
 | D
 | G
 | L
 | M
 | P
 | R
 | S
 | T
 | W

A

 	
 	above_thr() (in module deepfinder.utils.objl)

B

 	
 	bin() (in module deepfinder.utils.smap)

 	
 	bin_array() (in module deepfinder.utils.common)

C

 	
 	Cluster (class in deepfinder.inference)

D

 	
 	
 deepfinder.utils.common

 	module

 	
 deepfinder.utils.objl

 	module

 	
 	
 deepfinder.utils.smap

 	module

 	disp() (in module deepfinder.utils.objl)

G

 	
 	generate_with_shapes() (deepfinder.training.TargetBuilder method)

 	generate_with_spheres() (deepfinder.training.TargetBuilder method)

 	get_class() (in module deepfinder.utils.objl)

 	
 	get_labels() (in module deepfinder.utils.objl)

 	get_obj() (in module deepfinder.utils.objl)

 	get_tomo() (in module deepfinder.utils.objl)

L

 	
 	launch() (deepfinder.inference.Cluster method)

 	(deepfinder.inference.Segment method)

 	(deepfinder.training.Train method)

M

 	
 	
 module

 	deepfinder.utils.common

 	deepfinder.utils.objl

 	deepfinder.utils.smap

P

 	
 	plot_volume_orthoslices() (in module deepfinder.utils.common)

R

 	
 	read() (in module deepfinder.utils.objl)

 	read_array() (in module deepfinder.utils.common)

 	
 	read_h5() (in module deepfinder.utils.smap)

 	remove_class() (in module deepfinder.utils.objl)

 	remove_obj() (in module deepfinder.utils.objl)

S

 	
 	scale_coord() (in module deepfinder.utils.objl)

 	
 	Segment (class in deepfinder.inference)

T

 	
 	TargetBuilder (class in deepfinder.training)

 	
 	to_labelmap() (in module deepfinder.utils.smap)

 	Train (class in deepfinder.training)

W

 	
 	write() (in module deepfinder.utils.objl)

 	
 	write_array() (in module deepfinder.utils.common)

 	write_h5() (in module deepfinder.utils.smap)

 nav.xhtml

 Table of Contents

 		
 Welcome to DeepFinder’s documentation!

 		
 Introduction

 		
 Context

 		
 What DeepFinder is

 		
 Guide

 		
 Annotation

 		
 The object list

 		
 Display window

 		
 Annotation GUI

 		
 Target generation

 		
 Sphere targets

 		
 Shape targets

 		
 Training

 		
 Segmentation

 		
 Clustering

 		
 Tutorial

 		
 SHREC’19 dataset

 		
 Chlamydomonas dataset

 		
 Command line tools

 		
 Set up

 		
 Annotation

 		
 Target generation

 		
 Training

 		
 Segmentation

 		
 Clustering

 		
 API

 		
 DeepFinder

 		
 Training

 		
 Inference

 		
 Utilities

 		
 Common utils

 		
 Object list utils

 		
 Scoremap utils

_images/gui_target_generation.png
Input

‘Shape mask paths
Objectlist path ... fexamplesitrainingfin/object Jist_tomo0.xmi 6
6
Strategy Shapes ~ 3
Initialize target H
Targetsize X 200 Vi 512 z 512 ;
a
Output a
3
Target path out/target_tomo0.mrc 10

_images/gui_train.png

_images/gui_cluster.png
Inputs

Label map path /analyze/out/tomo9_bin1_labelmap.mrc|
Cluster radius 5

Size threshold 1
Output
Object list path out/objlist.xml

Launch

_images/gui_segment.png
N 5 % o
T o

st i Oty

_static/file.png

_images/sampling_rnd_shift.png
Sampled patches

: g
. m

molecle. W

membrane

patch size

_static/minus.png

_static/plus.png

_images/deepfinder_workflow.png
Tomogram Object fist Segmentation

map
ox,v1,21)

Training

@ Nourl ntork

Inference

_images/gui_annotation.png
| Add | | Remove
'Number of objects

: Class 1 8

2 12

; Class 3 3
Objects

| Add | | Remove

7 Obj ID Class Coordinates =

6 6 2 (735,268,150)

7 7 2 (730,243,150)

: 8 2 (719,224,150)

: 9 2 (579,192,150)

E 10 2 (598,184,150)

1111 2 (623,184,150)

; 12 2 (495,473,150)

Ta 2 (521,454,150)

14 14 2 (528,431,150)

s 2 (111 RR9 1RM E
Object list

I

Open

N

Save

(x,y,2)=(439,257,150)

Tomogram

| Load |

Contrast L] L]

Neighbor slices 5 3] Denoise

Label map

Opacity]

